Fractional Calculus and Analytic Continuation of the Complex Fourier-Jacobi Transform
نویسندگان
چکیده
منابع مشابه
The discrete fractional Fourier transform
We propose and consolidate a definition of the discrete fractional Fourier transform that generalizes the discrete Fourier transform (DFT) in the same sense that the continuous fractional Fourier transform generalizes the continuous ordinary Fourier transform. This definition is based on a particular set of eigenvectors of the DFT matrix, which constitutes the discrete counterpart of the set of...
متن کاملFractional-Fourier-transform calculation through the fast-Fourier-transform algorithm.
A method for the calculation of the fractional Fourier transform (FRT) by means of the fast Fourier transform (FFT) algorithm is presented. The process involves mainly two FFT's in cascade; thus the process has the same complexity as this algorithm. The method is valid for fractional orders varying from -1 to 1. Scaling factors for the FRT and Fresnel diffraction when calculated through the FFT...
متن کاملFractional Fourier Transform
Abstract The integral transform method based on joint application of a fractional generalization of the Fourier transform and the classical Laplace transform is applied for solving Cauchy-type problems for the time-space fractional diffusion-wave equations expressed in terms of the Caputo time-fractional derivative and the generalized Weyl space-fractional operator. The solutions, representing ...
متن کاملInvolving Fractional Fourier Transform
In this paper, some properties of pseudo-differential operators, SG-elliptic partial differential equations with polynomial coefficients and localization operators on space S ν (R), are studied by using fractional Fourier transform. AMS Mathematics Subject Classification (2010): 35S05, 46F12, 47G30.
متن کاملFourier spectral method for analytic continuation
The numerical analytic continuation of a function f(z) = f(x + iy) on a strip is discussed in this paper. The data are only given approximately on the real axis. The periodicity of given data is assumed. A truncated Fourier spectral method has been introduced to deal with the ill-posedness of the problem. The theoretic results show that the discrepancy principle can work well for this problem. ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Tokyo Journal of Mathematics
سال: 2004
ISSN: 0387-3870
DOI: 10.3836/tjm/1244208484